Research on Mount Olympus

Besides captivating Ancient Greeks’ imagination that ultimately gave birth to Ancient Greek Mythology, Mount Olympus has also been the subject of scientific questioning since antiquity.

Panoramic view from Mount Olympus highest summit, Mytikas or Pantheon at c. 2918m asl. (Photo ©

Diffuse information point to increased interest for Mount Olympus herbs from Ancient Greeks as well as from Ancient Egyptians. The first topographic mission concerning Mount Olympus is ascribed to geographer Xenagoras (1st century AD), whose estimates about the mountain’s elevation were not far from modern measurements. Next known cartographic reconnaissance was realized 17 centuries later by the British Navy in their overall attempt to construct the first maps of Greece. In AD 1831, British officer R. N. Coperland estimated the elevation of Mount Olympus at 2973m asl. Similar estimates are illustrated in other maps constructed during the 19th century AD (information is from Nikos Nezis book Olympus, edited from Hellenic Climbing & Mountaineering Federation, 2000, in Greek). 


Mount Olympus most popular flora species including 25 endemics (Illustration © Giannis Beinas)

During the same period (19th century AD), many botanists rushed on Mount Olympus to study its rich flora. In AD 1836, French researcher R. Aucher-Eloy visited Mount Olympus to collect herbs and in AD 1851 the first endemic species were recorded by German botanist Th. Heldreich. 

By the turn of the 20th century, research on Mount Olympus obtained a multidisciplinary color as many botanists, geologists and topographers set foot on its higher slopes to provide the first detailed scientific reports about flora, fauna and geology together with accurate elevation measurements of its highest peaks. 

In AD 1921, Swiss engineers Marcel Kurz and Hans Bickel employed stereophotogrametric methods and calculated the elevation of Mytikas (Pantheon) to be 2917.7m asl., while few years before (AD 1909) Yugoslav geologist J. Cvijic provided the first detailed reports of Mount Olympus geology. 


Mount Olympus uplifted carbonates at c. 2800m asl. (Photo ©

By late 20th century AD Mount Olympus saw a scientific climax as many international research projects concerning climate, geology and flora were realized. The construction of Agios Antonios meteorological station at 2815m asl. and the 16-year long (AD 1962 – 1978) NATO sponsored “Mount Olympus Cumulus Project” resulted in detailed studies about local climate. The 1970’s brought Danish researcher Arne Strid in Greece who realized exhaustive botanical studies that resulted in the publication of the book “Wild Flowers of Mount Olympus”. 

During the 1980’s Belgian geologist Anne Schmitt spent many years on Mount Olympus with her PhD study shedding new light on the geological evolution of the mountain and setting the basis for future research, while a National Geographic sponsored geological reconnaissance with Ohio State University researchers provided the first detailed accounts of the Quaternary glacial history of Mount Olympus.


Tectonic uplift results in folding of rock formations. Shown here it the contact between Triassic and Cretaceous (?) carbonates of Mount Olympus. (Photo ©

Recent scientific studies have focused on hydrology, water resources, pollen distribution, cave exploration and on past environmental changes. The latest scientific project occurring on Mount Olympus concerns the environmental change and glacial evolution of Mount Olympus during the Holocene (i.e. the last 10.000 years).

Megala Kazania cirque. The location where Mount Olympus permanent snowfields and ice bodies (remnants of the most recent – Holocene – glaciers) still survive, comprises the main fieldwork area of the ongoing scientific project entitled “Did the Ancient Greek Gods ever got cold? Defining the Holocene glacial of Mount Olympus” (Photo © Christos Tsoutsias)

 Download Document

Selected literature in chronological order 
 1. Neumayr M (1876) Das schiefergebirge der halbinsen Chalkidike und der Thessalischen Olymp. Jahrbuch Geolgischen Reishsansalt XXVI: 315–320.
 2. Sintenis P (1890) Olymp. Oesterreische Botanische Zeitschrift.
 3. Cvilic J (1908) Beobachtungen uber die Eiszeit auf der Balkanhanlbinsel U.S.W. und dem Misischen Olymp. Zeits. Fur Gletscherkunde, Berlin 2: 1–35.
 4. Kurz M (1923) Le Mont Olympe (Thessalie). Paris/Neuchatel: Victor Attinger.
 5. Hayek A (1928) Ein beitrag zur Kenntnis der vegetation und der flora des Thessalichen Olymp. Beihefte zum Botan. Zentralbalt XLV:220–328.
 6. Koller O (1929) Das vorkommen von Rupicapra rupicapra auf dem berge Olymp (Griechenland). Mammol Mit. III Zool. Anz. 49.
 7. Charworth-Musters JL (1932) A contribution to our knowledge of the mammals of Macedonia and Thessaly. Ann. Nat. Hist. 166–171.
 8. Stojanov N and Jordanov D (1938) Botaniche studien auf dem Thessalischen Olymp. I. Floristische Ergebnisse (Jahrbuch Universitat Sofia Physicalish - Mathematische Fukultat) XXXIV-3 147–249.
 9. Janssens E (1953) Un naturaliste chez les dieux. La Flambeau vol.5.
10. Quezel P (1965) Contribution a l’ etude de la Pinde central et septentrional et de l’ Olympe de Thessalie. Candolea v.20.
11. Godfriaux I (1968) Étude géologique de la région de l'Olympe. Annales Géologiques des Pays Helléniques, 19:1–284.
12. Barton CM (1975) Mount Olympus, Greece: new light on an old window. J. Geol. Soc. Lond. 131:389–396.
13. Barton CM (1976) The tectonic vector and emplacement age of an allochthonous basement slice in the Olympos area, N.E. Greece. Bull. Soc. Geol. France 18:253–258.
14. Faugères L (1977) Naissance et dévelopment du relief de l'Olympe (Grèce). Revue de Géographie Physique et de Géologie Dynamique 19(2):7–26.
15. Sahsamanoglou H (1977) Mount Olympus Massif as a lower troposphere heat source. PhD Thesis, Aristotle University of Thessaloniki, Greece.
16. Strid A (1980) Wild Flowers of Mount Olympus. Athens: Goulandris Natural History Museum.
17. Schmitt A (1983) Nouvelles contributions à l'étude géologique des Pieria, de l'Olympe, et de l'Ossa (Grèce du Nord) [Ph.D. dissert.]. Mons, Belgium, Faculté Polytechnique de Mons.
18. Psilovikos A (1984) Phenomena of river incision and terrace formation on the eastern foothills of Mt. Olympus, Greece. Revue de Géographie, Institute de Géographie Académ, Slovaque des Sciences Brataslava, 36:201–216.
19. Schermer ER (1990) Mechanisms of blueschist creation and preservation in an A-type subduction zone, Mount Olympos region, Greece. Geology 18:1130–1133.
20. Schermer ER, Lux DR and Burchfiel BC (1990) Temperature–time history of subducted crust, Mount Olympus region, Greece. Tectonics 9:1165–1195.
21. Schermer ER (1993) Geometry and kinematics of continental basement deformation during the Alpine orogeny, Mt. Olympos region, Greece. J. Struct. Geol. 15:571–591.
22. Stiros S, Arnold M, Laborel F, Pirazzoli P and Pomoni-Papaioannou F (1994) Late Quaternary uplift of the Olympus–Pelion Range coasts (Macedonia–Thessaly, Greece). Bull. Geol. Soc. Greece 30:325–330.
23. Pavlidis T and associates (1995). An evaluation of water resources of Enipeas River, Mount Olympus, Greece. Forestry Department, Aristotle University of Thessaloniki, Greece.
24. Smith GW, Nance RD and Genes AN (1997) Quaternary glacial history of Mount Olympus, Greece. Geological Society of American Bulletin 109: 809–824.
25. Smith GW, Nance RD and Genes AN (2006) Pleistocene glacial history of Mount Olympus, Greece: Neotectonic uplift, equilibrium line elevations, and implications for climatic change. Geological Society of America Special Papers 409: 157 - 174.
26. Nance RD (2010) Neogene-recent extension on the eastern flank of Mount Olympus, Greece. Tectonophysics 488: 282–292.
27. Charalampopoulos A, Damialis A, Tsiripidis I, Mavrommatis I, Halley JM, Vokou D (2012) Pollen production and circulation patterns along an elevation gradient in Mt Olympos (Greece) National Park. Aerolobiologia DOI 10.1007/s10453-013-9296-0
28. Welsh M (2013) Low-temperature cooling history of the Olympus-Ossa massif: new insights from zircon and apatite (U-Th)/He thermochronology and thermal modelling. BSc Thesis Department of Earth Sciences Dalhousie University Halifax, Nova Scotia
29. Klesse S, Ziehmer M, Rousakis G, Trouet V and Frank D (2014) Synoptic drivers of 400 years of summer temperature and precipitation variability on Mt. Olympus, Greece. Climate Dynamics DOI 10.1007/s00382-014-2313-3.
30. Styllas M, Schimmelpfennig I, Ghilardi M and Benedetti L (2015) Geomorphologic and paleoclimatic evidence of Holocene glaciation on Mount Olympus, Greece. The Holocene (doi: 10.1177/0959683615618259). 

Η Ιστορία και η Λαογραφία του Ολύμπου μέσα από τα Περάσματά του

Σίγουρα, ο Όλυμπος είχε δει την ανθρώπινη παρουσία πολύ πριν εμφανιστούν οι ορειβάτες. Παρ ολύμπιοι οικισμοί αναφέρονται από την νεολιθική εποχή (περίπου 7000 π.Χ.) σε διάφορες τοποθεσίες κατά μήκος της σημερινής Εθνικής Οδού (π.χ. Πηγή Αθηνάς), ενώ τα ψηλότερα τμήματα πιο κοντά στο βουνό, σχετικά άργησαν να δούνε την ανθρώπινη παρουσία, η οποίοι κατά την εποχή του Χαλκού (3000 – 1100 π.Χ.) γίνεται φανερή σε ενδιάμεσες θέσεις, όπως η Αρτέμιδος, η Κρανία (στην παραλία Παντελεήμονα), περιοχή Λειβήθρων, η Τοπόλιανη (ανάμεσα στην Άνω Λεπτοκαρυά και το Λιτόχωρο) και οι Σπάθες, όπως προκύπτει από το νεκροταφείο κοντά στον Αγ. Δημήτριο. Έκτοτε, η παρουσία των Θνητών που ανέβαιναν στον Όλυμπο για να ψάξουν τους Θεούς, τους οποίους οι ίδιοι είχαν βάλει εκεί πάνω, έγινε ολοένα και συχνότερη, με αποκορύφωμα τον τελευταίο αιώνα.
Τα μονοπάτια που σήμερα χρησιμοποιούν πάν πολλοί ορειβάτες, αναρριχητές, δρομείς, περιηγητές και ερευνητές, για να ανέβουν στις ψηλότερες κορυφές, να σκαρφαλώσουν στις πιο δυσπρόσιτες ορθοπλαγιές, να πολεμήσουν το χρόνο και τον εαυτό τους, αλλά και για να ερευνήσουν το ιδιαίτερο φυσικό περιβάλλον του Ολύμπου, αποτελούσαν κάποτε τους βασικούς δρόμους για διαφορετικές δραστηριότητες, όπως για παράδειγμα το εμπόριο.

Η διαφορετική αυτή ιστορία των μονοπατιών του Ολύμπου αποτυπώνεται με τον καλύτερο τρόπο μέσα από την πρόσφατη διπλωματική εργασία του Βασίλη Δεληγιάννη, η οποία εκπονήθηκε στο Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, της Πολυτεχνικής Σχολής, του Αριστοτελείου Πανεπιστήμιου Θεσσαλονίκης, με τίτλο:  
"Η Ιστορία και η Λαογραφία του Ολύμπου μέσα από τα Περάσματά του. Ένας Άτλαντας για τον Όλυμπο και τα παλιά μονοπάτια του."

Did the Ancient Greek Gods ever Got Cold? France Television filming science on Mount Olympus

Another winter season kicks in and the Plateau of Muses is covered with snow since the first days of November (continuous updates at Of course it is now worthy to wander what this winter is going to be like for many different reasons. Name it adequate snow for skiing and climbing and for all winter mountain lovers, or most important adequate water resources for the next summer. In a “drying” Mediterranean region water resources will be very important over the next decades.

C:\Users\Mike\Documents\Mt. Olympus\Winter 2017\Photoes\P1010467.JPG

Eyes on the coming winter season for different reasons.
Skiing, climbing, but most important the sustainability of water resources that are under pressure from warming climate.
© Mike Styllas)

But for scientists to understand how our future on this planet will evolve, have first to look back into our past. Apparently things have been different in the past and in the case of Mount Olympus. We now know for sure that there were periods with much warmer and drier conditions (as for example during the Bronze Age), higher temperatures and less snow, which alternated with periods when small glaciers (especially in Megala Kazania cirque) evolved because there was lots of snow in the winter and cooler summers (this happened during the Iron Age but also before 700 years). But that was in the past.

The last summers between the years 2013 – 2017 have generally warm, but not warmer than previous summers (for example 2012). The major problem is that the last winters have been poor with less and less snow which arrives late in the season. Of course this year looks a little different as the autumn snowfall came just on time promising a “good” winter.

The cause:
Summer (June to September) temperature measurements from Christos Kakkalos refuge meteorological station
(data from correlated with data from Dion station –
that show the warming trend after 2014, which is in line with global trends. 

The summer warming and the winter drying with less sow, has had an immediate impact on the environment. During the last four years the small permanent snowfields that were surviving under the north face of Skolio, in Megala Kazania are on the brink of extinction. The summer (June – September) temperatures on the Plateau of Muses have risen more than the global average.

C:\Users\Mike\Desktop\Mike Styllas\Ελληνικό Πανόραμα\Χιονούρες Μεγάλα Καζάνια_2013_2017.tif
The result:
Less snow in the winter and higher temperatures in the summer have pushed the Mount Olympus “Eternal Snows” 
in Megala Kazania on the brink of extinction. All photos are taken in late October or early November before the new snow arrives 
Photos of 2013 
© Antonis Papagiannopoulos, Photos of 2015 and 2017 © Mike Styllas) 

The climatic evolution of Mount Olympus through the study of the old glaciers was the overall goal of the scientific project “Did the Ancient Greek Gods ever got Cold?” ( As the project was realized in cooperation with the French research institute CEREGE (Centre Europien de Recherche et d’Enseignement en Gιosciences de l’Environnement), caught the attention of France Television show Des Racines et Des Ailes (With Roots and Wings), so that they devoted a large portion on their film on Greece, to the scientific studies and the past climate of Mount Olympus (
As forecasts predict that more snow is on the way, I wish you all the best for this coming winter!